Exploration of Technology Parameter Values of Integrated Circuits

Rodrigo Fonseca Rocha Soares – UFMG
Frank Sill Torres – DELT/UFMG
Dirk Timmermann – University of Rostock
Focus / Principal idea:

Technology Parameter Exploration of Integrated Circuits

Standard-Cell Characterization Flow for Novel Technologies
Outline

1. Motivation
2. Methodology
3. Results
4. Conclusion
Motivation

Technology Parameters

- Integrated circuit technologies offer two kind of parameters:
 - Design parameters (e.g. transistor width, transistor length)
 - Technology parameters (e.g. doping, oxide thickness)
- Design parameters
 - Constrained
 - Modifiable by circuit designers
- Technology parameters:
 - Constrained
 - Not accessible by circuit designers
 - Can be oriented to consumer applications profiles
 (e.g. High performance / Low-power)
Motivation

Technology Parameter Values

- **Question:** How to chose values for technology parameters?
- **Several constraints:** I_{on} vs. I_{off} currents, area, gain, …
- **Interesting for:**
 - Technology engineers
 - Researchers for novel technologies (CNTFET, SET, …)
- **Common approach:**
 - Analysis using **selected cells** (FO4 configuration)
 - **Sweep** of input parameters (e.g. slope, input value, …)
Motivation

Novel Approach

- Problem: Common solution not accurate enough
- Example: Average CMOS PTM22 gains in relation to CMOS PTM32

Proposal:

- Analysis of technology parameter based on actual designs
Methodology

Presentation

- Principal ideas:
 - Analysis of technology parameters impact using characterized standard cell library and test designs
 - Interactive parametric exploration

- Application of commercial tool(s) for standard cell library characterization
- Technology can be given on Spice, Circuit, or Verilog-A level
- Test designs oriented in future application of selected technology
Methodology

- **Two step flow:**
 - Pre-Setup
 - Technology Parameter Exploration

- Pre-Setup
 - Environment Setup
 - Standard-cell representation

- Technology parameter Exploration
 - Standard-cell characterization
 - Benchmark and analysis
Methodology

Pre-Setup Stage:

- Design of standard cell library with default parameter values
- Extraction of parameters for look-up tables in characterization flow
- Selection of most important technology parameters and its ranges for exploration
Methodology

Technology Parameter Exploration

- Start parameters with default values
- Perform characterization and benchmark with actual designs
- Figure of Merit evaluation and analysis
- Iterate

\[
F(\Phi) = \varphi_1 \left(\sum_{\text{designs}} \frac{P_{\text{dyn},i}(\Phi)}{P_{\text{dyn},i,\text{init}}} \right)^{\gamma_1} + \varphi_2 \left(\sum_{\text{designs}} \frac{P_{\text{leak},i}(\Phi)}{P_{\text{leak},i,\text{init}}} \right)^{\gamma_2} \\
+ \varphi_3 \left(\sum_{\text{designs}} \frac{t_{\text{delay},i}(\Phi)}{t_{\text{delay},i,\text{init}}} \right)^{\gamma_3} + \varphi_4 \left(\sum_{\text{designs}} \frac{A_i(\Phi)}{A_i,\text{init}} \right)^{\gamma_4}
\]
Results

Environment

- Analyzed Technologies:
 - PTM22 and PTM32 (based on Predictive Technology Model - PTM)
 - FINFET10-HP FINFET10LL (based on PTM)
 - CNTFET32 and CNTFET22 (based in Stanford CNFET Model)

- Basic standard cell library (10 cells, different sizes, FlipFlop)

- Test Designs:
 - ISCAS suite: c1908, c2670, c3540, c5315, c7552
 - ITC99 suite: b01, b05

- Tools:
 - Cell library characterization: SiliconSmart (Synopsys)
 - Simulation: Virtuoso Analog Design Environment (Cadence)
Results

Technology Comparison – Delay (t_{delay})

- Versus results for PTM32

![Bar chart showing technology comparison for delay (t_{delay}) vs. t_{delay}@PTM32](chart.png)
Results

Technology Comparison - Power Delay Product (PDP)

- Versus results for PTM32
Results

Technology Comparison – Leakage (P_{leak})

- Versus results for PTM32
Results

Technology Comparison

- Comparison of relation to PTM32 of FO4 analysis and proposed flow
Results

Parameter Exploration

- Exemplary parameter exploration on CNTFET22 technology
- **Key parameter: tube diameter** (high impact on ON/OFF current)
- **Note:**
 - Number of tubes (N_{tubes}): changes
 \[N_{tubes} = \frac{W_{gate}}{Pitch} - 1 \]
 - Distance between tubes (pitch): constant
 - Channel length (L_{ch}): constant
Results

Parameter Exploration

- Results for delay in comparison to standard diameter ($d_{\text{CNT}} = 2\text{nm}$)
Results

Parameter Exploration

- Results for dynamic power consumption (P_{dyn}) in comparison to standard diameter ($d_{CNT} = 2\,\text{nm}$)
Results

Parameter Exploration

- Results for leakage in comparison to standard diameter
Results

Parameter Exploration

- Figure of Merit with weights $\phi = 1$, $\gamma = 1$, $\gamma_{\text{leak}} = 1.5$
Conclusion

- New flow for exploration of technologies parameters
- Proposal of Figure of Merit for evaluation of technology parameter set
- Approach based on actual designs
- Increased the quality of predictions by up to 46%
- Applied successfully in CNTFET based technology
Thank you!

OptMAlab / ART
www.asic-reliability.com
EXTRA CNFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{gate}</td>
<td>Gate width</td>
<td>3a</td>
</tr>
<tr>
<td>L_{ch}</td>
<td>Channel length</td>
<td>2a</td>
</tr>
<tr>
<td>L_{ss}</td>
<td>Doped CNT source-side extension region length</td>
<td>2a</td>
</tr>
<tr>
<td>L_{dd}</td>
<td>Doped CNT drain-side extension region length</td>
<td>2a</td>
</tr>
<tr>
<td>N_{tub}</td>
<td>Number of nanotubes in a device</td>
<td>$(W_{\text{gate}}/\text{Pitch})-1$</td>
</tr>
</tbody>
</table>

Feature size independent

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{CNT}</td>
<td>Tubes diameter</td>
<td>1.5 nm</td>
</tr>
<tr>
<td>Pitch</td>
<td>Distance between the centers of two adjacent CNTs within the same device</td>
<td>4 nm</td>
</tr>
<tr>
<td>Distance</td>
<td>Distance between the corners of two adjacent CNTs</td>
<td>2.5 nm</td>
</tr>
<tr>
<td>Tubes density</td>
<td>Tubes density in the device</td>
<td>250 CNT/µm</td>
</tr>
<tr>
<td>T_{ox}</td>
<td>Thickness of high-k top gate dielectric material</td>
<td>4 nm</td>
</tr>
<tr>
<td>L_{eff}</td>
<td>Mean free path in the intrinsic CNT channel region due to non-ideal elastic scattering.</td>
<td>200 nm</td>
</tr>
<tr>
<td>C_{sub}</td>
<td>Coupling capacitance between channel region and substrate</td>
<td>200 nF</td>
</tr>
<tr>
<td>E_{F}</td>
<td>The Fermi level of the doped S/D nanotube.</td>
<td>0.6 eV</td>
</tr>
</tbody>
</table>
EXTRA FINFET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FINFET10-HP</th>
<th>FINFET10-LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{ch}</td>
<td>14 nm</td>
<td>14 nm</td>
</tr>
<tr>
<td>P/N*</td>
<td>1x1</td>
<td>1x1</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>0.75 V</td>
<td>0.75 V</td>
</tr>
<tr>
<td>Fin height</td>
<td>21 nm</td>
<td>21 nm</td>
</tr>
<tr>
<td>Fin width</td>
<td>8 nm</td>
<td>8 nm</td>
</tr>
<tr>
<td>EOT</td>
<td>0.68 nm</td>
<td>0.88 nm</td>
</tr>
<tr>
<td>ETA0</td>
<td>0.6778</td>
<td>0.4079</td>
</tr>
</tbody>
</table>
EXTRA BULK

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PTM32</th>
<th>PTM22</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{ch}</td>
<td>32 nm</td>
<td>22 nm</td>
</tr>
<tr>
<td>W_{min}</td>
<td>64 nm</td>
<td>44 nm</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>1.0V</td>
<td>0.9V</td>
</tr>
</tbody>
</table>

![Diagram of a transistor](image)

- **Gate**
- **Drain**
- **Source**
- **Substrate**
- **Oxide**